Сварка алюминия – полное руководство. Как мне сварить алюминий?

Сварка алюминия

Сварка алюминия, алюминий и его сплавы

Алюминий – это химический элемент, который составляет около 8% земной коры, что делает его самым распространенным металлом и третьим по распространенности элементом после кислорода и кремния. Алюминий хорошо известен своей низкой плотностью (около 2,7 г / см 3 ) и, благодаря явлению пассивации, отличной коррозионной стойкостью.

Сварка алюминия – полное руководство. Как мне сварить алюминий?

Поскольку чистый алюминий является относительно мягким, добавляются небольшие количества легирующих элементов для получения ряда механических свойств. Сплавы сгруппированы по основным легирующим элементам. Определенные коммерческие сплавы имеют четырехзначное обозначение в соответствии с международными спецификациями на деформируемые сплавы или буквенно-цифровую систему ISO. 

В таблице 1 представлены дополнительные сведения о составе этих классификаций.

Система нумерации алюминия

Первая цифра серии указывает на основной легирующий элемент, добавляемый в алюминиевый сплав, и используется для описания серии, то есть серии 1000 или серии 5000 и т. д.

Вторая цифра представляет модификацию конкретного сплава в серии; т.е. x1xx представляет первую модификацию указанного сплава, в то время как x2xx представляет вторую модификацию. Третья и четвертая цифры обозначают сплав в определенной серии. Подводя итог, сплав 2024, входит в серию сплавов 2000 года, имеет ноль модификаций и указан сплав типа 24.

Однако есть исключение из этой системы нумерации, которая касается алюминия серии 1000; последние две цифры показывают минимальный процент алюминия выше 99%. Например, 1050 означает минимальное содержание алюминия 99,50%.

Алюминиевые сплавы также будут включать обозначение допуска, они определяют дополнительные этапы обработки (если они реализованы). 

Обозначения и допуски приведены в таблице 2. В дополнение к обозначениям и допуски, приведенным в таблице 2, есть два поднабора для «Н» – деформационное упрочнение и «Т» – термическая обработка. Таблицы 3 и 4 описывают эти обозначения «H» и «T» соответственно.

 

Таблица 1 – Серия кованых алюминиевых сплавов
Серия   легирующий элемент Прочность на растяжение (МПа) * 1  Термообработанные  Приложения
ххх  99% минимум алюминия (чистый) 70 – 185 нет Коррозионная стойкость, трубопровод, электропроводность
ххх  медь 185 – 430 Универсальные, аэрокосмические, поковки
ххх марганца 110 – 280 нет Кастрюли и сковородки, теплообменники, коррозионная стойкость
ххх  кремний 170 – 380 X / ✔ Присадочная проволока (сварочная)
ххх  магниевый 125 – 350 нет Морские, автомобильные, сосуды под давлением, мосты, здания
ххх Магний и кремний 125 – 400 Экструзии, декоративные, автомобильные, универсальные
ххх цинк 220 – 750  Универсальная, аэрокосмическая, броневая плита, спортивное спортивное снаряжение

* 1   Зависит от состава и последующих этапов обработки

Таблица 2 – Обозначения характера
Обозначение характера  Смысл
F Как изготовлено – применяется к продуктам процесса формования, в которых не применяется особый контроль над условиями термического или деформационного упрочнения
О Отожженный – применяется к продукту, который был нагрет для получения условий с самой низкой прочностью для улучшения пластичности
H Штамм закаленный – применяется к продуктам, которые укрепляются за счет холодной обработки. Деформационное упрочнение может сопровождаться дополнительной термической обработкой, которая приводит к некоторому снижению прочности. Две или более цифры всегда следуют за ‘H’ 
W Термообработка раствора – нестабильный характер, применимый только к сплавам, которые самопроизвольно стареют при комнатной температуре после термической обработки раствора
T Термическая обработка – для получения стабильных температур, отличных от F, O или H. Применяется к продукту, который был подвергнут термообработке, иногда с дополнительным деформационным упрочнением для получения стабильного отпуска. Одна или несколько цифр всегда следуют за буквой «Т»

 

Таблица 3 – Подразделения обозначений «H» 
Обозначение Н * 2  Значение 
H1x Напряжение закаленное
H2x Напряжение закаленное и частично отожженное
h3x  Штамм закаленный и стабилизированный
H4x Штамм закаленный и лакированный или окрашенный

2 Вторая цифра «х» указывает на степень деформационного упрочнения: х2 – четверть жесткой, х4 – полутвердой, х6 – три четверти твердой, х8 – полная жесткая, х9 – сверхтвердая

Таблица 4 – Подразделения обозначений «T»
Обозначение Т * 3  Значение
T1 Естественно состарился после охлаждения от процесса формирования при повышенной температуре
T2 Холод работал после охлаждения в процессе формирования при повышенной температуре, а затем подвергался естественному старению
T3 Раствор подвергается термообработке, холодной обработке и естественному старению
T4 Раствор подвергается термообработке и естественному старению
T5 Искусственно состаренный после охлаждения в процессе формирования при повышенной температуре
T6  Раствор термообработан и искусственно состарен
T7 Раствор термообработан и стабилизирован (отработанный) 
T8 Раствор подвергается термообработке, холодной обработке и искусственному старению
T9 Раствор термообработанный, искусственно состаренный и обработанный холодным способом
T10 Холод работал после охлаждения в процессе формирования при повышенной температуре, а затем подвергался искусственному старению

* 3 Дополнительные цифры могут быть добавлены к обозначению «Tx» и обозначают снятие напряжения. TX51 или TXX51 – напряжение, снятое при растяжении, и TX52 или TXX52 – напряжение, снятое при сжатии

Зачем используют и нужна сварка алюминия?

Алюминиевые сплавы широко распространены в транспортных целях, поскольку они обеспечивают инженерные материалы хорошим соотношением прочности и веса при разумных затратах. В дальнейшем используют его коррозионную стойкость и проводимость (термическую и электрическую) некоторых сплавов. Хотя обычно у него низкая прочность, некоторые из более сложных сплавов могут иметь механические свойства, эквивалентные сталям.

В связи с многочисленными преимуществами алюминиевых сплавов, предлагаемых для промышленности, существует необходимость в определении лучших практик для его сварки.

Сложно ли сваривать алюминий?

Алюминиевые сплавы создают множество трудностей при сварке, в том числе:

  • Высокая теплопроводность. Это приводит к чрезмерному рассеиванию тепла, что может затруднить сварку и / или привести к нежелательному искажению деталей из-за того, что требуется больший подвод тепла. Для анализа сварки желательно использовать рентгенографический метод контроля рентгеновские пленки, типа AGFA D7AGFA D4 от GE
  • Растворимость водорода. Водород очень хорошо растворяется в расплавленном алюминии, в результате чего сварочная ванна поглощает водород во время обработки. Как только расплавленный материал затвердевает, пузырьки водорода захватываются, создавая пористость.
  • Оксидный слой. Алюминий имеет оксидный слой (оксид алюминия), который имеет гораздо более высокую температуру плавления (2060 ° С), чем исходный алюминиевый сплав (660 ° С). При сварке это может привести к тому, что оксидный слой будет включен в область сварного шва, что может привести к отсутствию дефектов плавления и снижению прочности сварного шва. Следовательно, заготовки должны быть очищены проволочной щеткой или химическим травлением перед сваркой, чтобы предотвратить включение оксида.

Как можно сварить алюминий?

Существует множество процессов, которые можно использовать для сварки алюминия и его сплавов, которые подробно описаны ниже:

Дуговая сварка алюминия

Дуговая сварка обычно используется для соединения алюминиевых сплавов. Большинство сортов кованой стали серий 1xxx, 3xxx, 5xxx, 6xxx и 7xxx средней прочности (например, 7020) могут быть сварены методом дуговой сварки. В частности, сплавы серии 5ххх обладают отличной свариваемостью. Высокопрочные сплавы (например, 7010 и 7050) и большая часть серии 2xxx не рекомендуются для сварки плавлением, поскольку они склонны к растрескиванию и образованию трещин.

  • Можете ли вы сварить алюминий с помощью MIG? Сварка может быть успешно использована для соединения алюминиевых сплавов. Процесс лучше всего подходит для более тонких материалов, таких как алюминиевый лист, потому что количество требуемого тепла меньше по сравнению с более толстыми пластинами. Чистый аргон является предпочтительным защитным газом для этого процесса, и используемая сварочная проволока / стержень должна быть по составу максимально схожей со свариваемыми деталями.
  • Можете ли вы сварить алюминий с TIG? Сварка может также использоваться для соединения алюминиевых сплавов. Вследствие высокой теплопроводности сыпучего алюминия процесс TIG обеспечивает достаточное выделение тепла для поддержания зоны сварки достаточно горячей, чтобы создать сварочную ванну. Сварка TIG может использоваться для соединения толстых и тонких профилей. Подобно сварке MIG, чистый аргон является предпочтительным защитным газом, и используемая сварочная проволока / стержень должна быть по составу аналогична свариваемым деталям.

Лазерная сварка алюминия

Как и другие процессы сварки, в том числе дуговой сварки, лазерные лучи могут быть использованы для сварки многих серий алюминиевых сплавов. Лазерная сварка обычно является более быстрым процессом сварки по сравнению с другими процессами сварки из-за высокой плотности мощности на поверхности материала. Лазерная сварка в замочной скважине позволяет получать сварные швы с высоким соотношением сторон (узкая ширина сварного шва: большая глубина сварного шва), что приводит к узким зонам термического влияния Лазерная сварка  может использоваться с чувствительными к растрескиванию материалами, такими как алюминиевые сплавы серии 6000, в сочетании с подходящим присадочным материалом, таким как алюминиевые сплавы 4032 или 4047. Используемые защитные газы выбираются в зависимости от марки алюминия, подлежащего соединению.

Электронно-лучевая сварка

Подобно лазерной сварке, электронные лучи хороши для получения быстрых сварных швов и небольших сварочных ванн. Электронные пучки также лучше при изготовлении сварных швов в очень толстых сечениях алюминия. В отличие от других процессов сварки , электронно-лучевая сварка происходит в вакууме, что означает, что защитный газ не требуется, что приводит к очень чистым сварным швам.

Правильный выбор присадочного металла (присадочная проволока или присадочный стержень), тщательно выбранные параметры сварки и конструкция соединения необходимы для минимизации риска образования горячих трещин в алюминиевых сплавах при использовании процессов сварки плавлением, таких как дуговая, электронно-лучевая и лазерная сварка.

Сварка трением алюминия

Сварка трением – это процесс соединения в твердом состоянии (т.е. плавление металла не происходит), который особенно подходит для соединения алюминиевых сплавов. Сварка трением способна объединить все серии алюминиевых сплавов, в том числе 2ххх и 7ххх, которые сложны в процессах на основе плавления. Кроме того, благодаря природе твердотельного процесса, необходимость в защитном газе устраняется, и достигается превосходная механическая производительность области сварки по сравнению со сваркой плавлением. Существует несколько вариантов обработки трения:

  • Сварка трением с перемешиванием, была разработан в TWI Ltd в 1991 году. Она работает с использованием нерасходуемого инструмента, который вращается и погружается в интерфейс двух заготовок. Затем инструмент проходит через поверхность раздела, и тепло от трения вызывает нагрев и размягчение материала. Вращающийся инструмент затем механически смешивает размягченный материал для получения сварного шва. Процесс обычно используется для соединения алюминиевого листа / материала плиты
  • Заправка фрикционной мешалкой точечной сварки,  является развитием процесса сварке трением и используется в качестве метода точечной сварки для замены заклепок в алюминиевом листовом металле.
  • Линейная сварка трением, работает путем колебания одной заготовки относительно другой, находясь под большим сжимающим усилием. Трение между колеблющимися поверхностями производит тепло, в результате чего материал поверхности раздела пластифицируется. Затем пластифицированный материал вытесняется с поверхности раздела, в результате чего заготовки укорачиваются (выгорают) в направлении силы сжатия. Во время выгорания интерфейсные загрязнения, такие как оксиды и посторонние частицы, которые могут повлиять на свойства и, возможно, срок службы сварного шва, выбрасываются во вспышку. После удаления загрязнений происходит чистый контакт металла с металлом, что приводит к сварке. Процесс используется для соединения сыпучих алюминиевых компонентов для получения почти чистых форм
  • Роторная сварка трением, аналогичен линейной сварке трением за исключением того, что объемные алюминиевые детали имеют цилиндрическую форму и вращаются для генерирования тепла от трения вместо линейных колебаний

Какой метод лучше всего использовать для сварки алюминия?

Лучший метод для сварки алюминия и его сплавов зависит от области применения соединения. Следующие пункты должны быть включены для рассмотрения, прежде чем принимать решение о сварочном процессе:

  • Стоимость (сварочное оборудование, расходные материалы, утилизация отходов, расходы оператора и т. д.)
  • Желаемая производительность сварки
  • Геометрические ограничения
  • Наличие поставщика
  • стабильность
  • Допуск искажения
  • Скорость производства
Мир неразрушающего контроля